Beam theory

Beam

M(z) = - EI v^{ii}(z)

By integrating:

\left\{
\begin{aligned}
&v(z) = \frac{1}{EI} \iiint q(z) \,dz^3 + \frac{1}{EI} c_1 \frac{z^3}{6} + \frac{1}{EI} c_2 \frac{z^2}{2} + \frac{1}{EI} c_3 z + \frac{1}{EI} c_4 \\
&v^{I}(z) = \frac{1}{EI} \iint q(z) \,dz^2 + \frac{1}{EI} c_1 \frac{z^2}{2} + \frac{1}{EI} c_2 z + \frac{1}{EI} c_3 \\
&v^{II}(z) = \frac{1}{EI} \int q(z) \,dz + \frac{1}{EI} c_1 z + \frac{1}{EI} c_2 \\
&v^{III}(z) = \frac{1}{EI} q(z) + \frac{1}{EI} c_1 \\
&v^{IV}(z) = \frac{1}{EI} q(z) \\
&w(z) = -\frac{1}{EA} \iint p(z) \,dz^2 + \frac{1}{EA} c_5 z + \frac{1}{EA} c_6 \\
&w^{I}(z) = -\frac{1}{EA} \int p(z) \,dz + \frac{1}{EA} c_5 \\
&w^{II}(z) = -\frac{1}{EA} p(z)
\end{aligned}
\right. \quad + \text{B.C.}

Examples

Cantilever beam

Simply supported beam

Load on the extremity

Movable load